МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования и науки Алтайского края Комитет администрации Кытмановского района по образованию МБОУ Дмитро-Титовская СОШ

РАССМОТРЕНО

педагогический совет

Знобин Ю.М.

Протокол №1 от

29.08.2025г.

ЗТВЕРЖДЕНО

директор школы

Знобин Ю.М.

Приказ №103 от

«29.08.2025г.

РАБОЧАЯ ПРОГРАММА

Информатика на платформе Яндекс. Учебник (внеурочная деятельность) для обучающихся 8 класса

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа даёт представление о целях, общей стратегии обучения, воспитания и развития, обучающихся средствами учебного предмета «Информатика» на базовом уровне; устанавливает обязательное предметное содержание, предусматривает его структурирование по разделам и темам курса; даёт распределение учебных часов по тематическим разделам курса и учётом последовательность изучения \mathbf{c} межпредметных ИХ И внутрипредметных связей, логики учебного процесса, возрастных особенностей обучающихся.

Рабочая программа составлена на основе:

- Федерального государственного образовательного стандарта основного общего образования (Приказ Минобрнауки России от 31 мая 2021 г. № 287);
- Федеральной рабочей программы основного общего образования «Информатика. Базовый уровень» (для 7—9 классов образовательных организаций).

Рабочая программа может быть скорректирована педагогами с учетом:

- Основной общеобразовательной программы основного общего образования образовательной организации;
 - Рабочей программы воспитания образовательной организации;
 - Учебного плана образовательной организации.

Целями изучения информатики на уровне основного общего образования являются:

- формирование основ мировоззрения, соответствующего современному уровню развития науки информатики, достижениям научно-технического прогресса и общественной практики, за счет развития представлений об информации как о важнейшем стратегическом ресурсе развития личности, государства, общества; понимание роли информационных процессов, информационных ресурсов и информационных технологий в условиях цифровой трансформации многих сфер жизни современного общества;
 - обеспечение условий, способствующих развитию алгоритмического

мышления как необходимого условия профессиональной деятельности в современном информационном обществе, предполагающего способность обучающегося разбивать сложные задачи на более простые подзадачи; сравнивать новые задачи с задачами, решенными ранее; определять шаги для достижения результата и т. д.;

- формирование и развитие компетенций обучающихся в области использования информационно-коммуникационных технологий, в том числе знаний, умений и навыков работы с информацией, программирования, коммуникации в современных цифровых средах в условиях обеспечения информационной безопасности личности обучающегося;

- воспитание ответственного и избирательного отношения к информации с учётом правовых и этических аспектов её распространения, стремления к продолжению образования в области информационных технологий и созидательной деятельности с применением средств информационных технологий.

Общая характеристика учебного предмета «Информатика»

Учебный предмет «Информатика» в основном общем образовании отражает:

- сущность информатики как научной дисциплины, изучающей закономерности протекания и возможности автоматизации информационных процессов в различных системах;
- основные области применения информатики, прежде всего информационные технологии, управление и социальную сферу;
 - междисциплинарный характер информатики и информационной деятельности.

Современная школьная информатика оказывает существенное влияние на формирование мировоззрения школьника, его жизненную позицию, закладывает основы понимания принципов функционирования использования информационных технологий как необходимого инструмента наиболее практически любой деятельности И одного ИЗ значимых технологических достижений современной цивилизации. Многие предметные знания и способы деятельности, освоенные обучающимися при изучении информатики, находят применение как в рамках образовательного процесса при изучении других предметных областей, так и в иных жизненных ситуациях, становятся значимыми для формирования качеств личности, т. е. ориентированы на формирование метапредметных и личностных результатов обучения.

Основные **задачи** учебного предмета «Информатика» – сформировать у обучающихся:

- понимание принципов устройства и функционирования объектов цифрового окружения, представления об истории и тенденциях развития информатики периода цифровой трансформации современного общества;

- знания, умения и навыки грамотной постановки задач, возникающих в практической деятельности, для их решения с помощью информационных технологий; умения и навыки формализованного описания поставленных задач;
- базовые знания об информационном моделировании, в том числе о математическом моделировании;
- знание основных алгоритмических структур и умение применять эти знания для построения алгоритмов решения задач по их математическим моделям;
- умения и навыки составления простых программ по построенному алгоритму на одном из языков программирования высокого уровня;
- умения и навыки эффективного использования основных типов прикладных программ (приложений) общего назначения и информационных систем для решения с их помощью практических задач; владение базовыми нормами информационной этики и права, основами информационной безопасности;
- умение грамотно интерпретировать результаты решения практических задач с помощью информационных технологий, применять полученные результаты в практической деятельности.

Место учебного предмета «Информатика» в учебном плане

В системе общего образования «Информатика» признана обязательным учебным предметом, входящим в состав предметной области «Математика и информатика».

Учебным планом на изучение информатики в 8 классе на базовом уровне отведено 34 учебных часа — по 1 часу в неделю. Количество часов может быть и расширено Учебного изменено В зависимости OT плана организации образовательной И индивидуальных учебных планов обучающихся.

Основные виды учебной деятельности

Раздел	Аналитическая	Практическая деятельность
	деятельность	
Системы	Раскрывать смысл	Записывать небольшие (от 0
счислен	изучаемых понятий.	до 1024) целые числа в
ия	Выявлять различие в	различных позиционных
	позиционных и	системах счисления
	непозиционных системах	(двоичной, восьмеричной,
	счисления. Выявлять общее	шестнадцатеричной).
	и различия в разных	Сравнивать целые числа,
	позиционных системах	записанные
	счисления.	в двоичной, восьмеричной и

		шестнадцатеричной системах
		счисления.
		Выполнять операции
		сложения и умножения над
		небольшими двоичными
		числами
Элементы	Раскрывать смысл изучаемых	Строить таблицы
математическо	понятий. Анализировать	истинности для логических
й логики	логическую структуру	выражений.
	высказываний.	Вычислять истинностное
	Использовать	значение логического
	логические операции.	выражения.
	Знакомиться с логическими	
	основами компьютера	
Исполнители и	Раскрывать смысл изучаемых	1. Создание и выполнение
алгоритмы.	понятий.	на компьютере несложных

Алгоритмичес	Анализировать предлагаемые	алгоритмов с использованием
ки		
е конструкции	последовательности команд	циклов и ветвлений для
	на предмет наличия у них	управления исполнителями,
	таких	
	свойств алгоритма, как	такими как Робот, Черепашка,
	дискретность,	Чертёжник.
	детерминированность,	2. Преобразование алгоритма
		ИЗ
	понятность,	одной формы записи в другую.
	результативность,	
	массовость. Определять по	3. Разработка для
		формального
	блок-схеме,	исполнителя алгоритма,
	для решения какой задачи	приводящего к требуемому
	предназначен данный	результату
	алгоритм.	
	Анализировать изменение	при конкретных исходных
		данных.
	значений величин при	4. «Ручное» исполнение
	пошаговом	ГОТОВЫХ
	выполнении алгоритма.	алгоритмов при конкретных
	Определять по выбранному	исходных данных
	методу решения задачи, какие	
	алгоритмические	
	конструкции	
	могут войти в алгоритм.	
ı	!	l '

Сравнивать различные алгоритмы решения одной задачи.

Создавать, выполнять вручную и на компьютере несложные алгоритмы с использованием циклов и ветвлений для управления исполнителями, такими как Робот, Черепашка, Чертёжник.

Исполнять готовые алгоритмы при конкретных исходных данных. Строить для исполнителя арифметических действий цепочки команд,

	дающих требуемый	
	результат при конкретных	
	исходных данных.	
Язык	Раскрывать смысл изучаемых	1. Программировани
		линейных
программиров	понятий. Определять по	алгоритмов, предполагающих
ан		
ия. Анализ	программе,	вычисление арифметических и
алгоритмов	для решения какой задачи она	логических выражений на
	предназначена.	изучаемом языке
	Строить арифметические,	программирования (одном
	строковые, логические	из перечня: Python, C++
		Паскаль,
	выражения и вычислять их	Java, С#, Школьный
	значения.	Алгоритмический Язык).
	Программировать линейные	2. Разработка программ,
	алгоритмы, предполагающие	содержащих оператор
	вычисление арифметических,	(операторы) ветвления,
	строковых и логических	на изучаемом языке
	выражений.	программирования из
	Разрабатывать программы,	приведённого выше перечня.
	содержащие оператор	3. Разработка программ,
	(операторы) ветвления, в том	содержащих оператор
	числе	(операторы) цикла,
	с использованием логических	на изучаемом языке
	операций.	программирования из
	Разрабатывать программы,	приведённого выше перечня
	содержащие оператор	
	(операторы) цикла.	

Выполнять диалоговую
отладку
программ.
Анализировать готовые
алгоритмы и программы

Организация учебного процесса

К наиболее предпочтительным формам учебной работы на занятиях в рамках курса относятся: фронтальное обсуждение вопросов с педагогом, работа с учебным курсом, творческие проекты, практические работы.

Используются сквозные виды учебной деятельности обучающихся, которые проходят через все уроки в рамках курса, являясь его содержательными и методологическими связующими звеньями: использование технологий смешанного обучения, информационных и здоровьесберегающих технологий.

Задания на дом в процессе изучения курса имеют творческий, поисковый или проблемный характер. Основной способ организации познавательной деятельности обучающихся - это работа с онлайн-сервисом Яндекс Учебник. В процессе работы над

курсом осуществляется восприятие нового для учеников материала; при интерпретации во время беседы происходит выбор мнения, принятие решения; в ходе диалога с учителем ученики обсуждают полученные знания, делают простейшие выводы.

Для участников образовательного процесса представлена система поддержки LMS.

Обучающиеся имеют доступ в личный кабинет, где сохраняются их результаты и представлена вся необходимая теоретическая информация. Учителя имеют возможность предоставить ученикам задания разного уровня,

включая задания с автоматической проверкой.

Содержание учебного предмета

Теоретические основы информатики

Системы счисления

Непозиционные и позиционные системы счисления. Алфавит. Основание. Развёрнутая форма записи числа. Перевод в десятичную систему чисел, записанных в других системах счисления.

Римская система счисления.

Двоичная система счисления. Перевод целых чисел в пределах от 0 до 1024 в двоичную систему счисления. Восьмеричная система счисления. Перевод чисел из восьмеричной системы в двоичную и десятичную системы и обратно. Шестнадцатеричная система счисления. Перевод чисел из шестнадцатеричной системы в двоичную, восьмеричную и десятичную системы и обратно.

Арифметические операции в двоичной системе счисления.

Элементы математической логики

Логические высказывания. Логические значения высказываний. Элементарные и составные высказывания. Логические операции: «и» (конъюнкция, логическое умножение), «или» (дизъюнкция, логическое сложение), «не» (логическое отрицание). Приоритет логических операций. Определение истинности составного высказывания, если известны значения истинности входящих в него элементарных высказываний.

Логические выражения. Правила записи логических выражений. Построение таблиц истинности логических выражений.

Логические элементы. Знакомство с логическими основами компьютера.

Алгоритмы и программирование

Исполнители и алгоритмы. Алгоритмические конструкции

Понятие алгоритма. Исполнители алгоритмов. Алгоритм как план управления исполнителем.

Свойства алгоритма. Способы записи алгоритма (словесный, в виде блоксхемы, программа).

Алгоритмические конструкции. Конструкция «следование». Линейный алгоритм. Ограниченность линейных алгоритмов: невозможность предусмотреть зависимость последовательности выполняемых действий от исходных данных.

Конструкция «ветвление»: полная и неполная формы. Выполнение и невыполнение условия (истинность и ложность высказывания). Простые и составные условия.

Конструкция «повторения»: циклы с заданным числом повторений, с условием выполнения, с переменной цикла.

Разработка для формального исполнителя алгоритма, приводящего к требуемому результату при конкретных исходных данных. Разработка несложных алгоритмов с использованием циклов и ветвлений для управления формальными исполнителями, такими как Робот, Черепашка, Чертёжник. Выполнение алгоритмов вручную и на компьютере. Синтаксические и логические опибки. Отказы.

Язык программирования

Язык программирования (Python, C++, Паскаль, Java, С#, Школьный Алгоритмический Язык).

Система программирования: редактор текста программ, транслятор, отладчик. Переменная: тип, имя, значение. Целые, вещественные и символьные переменные. Оператор присваивания. Арифметические выражения и порядок их вычисления.

Операции с целыми числами: целочисленное деление, остаток от деления.

Ветвления. Составные условия (запись логических выражений на изучаемом языке программирования). Нахождение минимума и максимума из двух, трёх и четырёх чисел. Решение квадратного уравнения, имеющего вещественные корни.

Диалоговая отладка программ: пошаговое выполнение, просмотр значений величин, отладочный вывод, выбор точки останова.

Цикл с условием. Алгоритм Евклида для нахождения наибольшего общего делителя двух натуральных чисел. Разбиение записи натурального числа в позиционной системе с основанием, меньшим или равным 10, на отдельные цифры.

Цикл с переменной. Алгоритмы проверки делимости одного целого числа на другое, проверки натурального числа на простоту.

Обработка символьных данных. Символьные (строковые) переменные. Посимвольная обработка строк. Подсчёт частоты появления символа в строке. Встроенные функции для обработки строк.

Определение возможных результатов работы алгоритма при данном множестве входных данных, определение возможных входных данных, приводящих к данному результату.

Планируемые образовательные результаты

Изучение информатики в 8 классе направлено на достижение обучающимися личностных, метапредметных и предметных результатов освоения учебного предмета.

Личностные результаты

Личностные результаты имеют направленность на решение задач воспитания, развития и социализации обучающихся средствами предмета.

Патриотическое воспитание:

- ценностное отношение к отечественному культурному, историческому и научному наследию;
- понимание значения информатики как науки в жизни современного общества; владение достоверной информацией о передовых мировых и отечественных достижениях в области информатики и информационных технологий;
- заинтересованность в научных знаниях о цифровой трансформации современного общества.

Духовно-нравственное воспитание:

- ориентация на моральные ценности и нормы в ситуациях нравственного выбора;
- готовность оценивать своё поведение и поступки, а также поведение и поступки других людей с позиции нравственных и правовых норм с учётом осознания последствий поступков; активное неприятие асоциальных поступков, в том числе в сети Интернет.

Гражданское воспитание:

- представление о социальных нормах и правилах межличностных отношений в коллективе, в том числе в социальных сообществах;
- соблюдение правил безопасности, в том числе навыков безопасного поведения в интернет-среде; готовность к разнообразной совместной деятельности при выполнении учебных, познавательных задач, создании

учебных проектов;

- стремление к взаимопониманию и взаимопомощи в процессе этой учебной деятельности; готовность оценивать своё поведение и поступки своих товарищей с позиции нравственных и правовых норм с учётом осознания последствий поступков.

Ценности научного познания:

- сформированность мировоззренческих представлений об информации, информационных процессах и информационных технологиях, соответствующих современному уровню развития науки и общественной практики и составляющих базовую основу для понимания сущности научной картины мира;
- интерес к обучению и познанию; любознательность; готовность и способность к самообразованию, осознанному выбору направленности и уровня обучения в дальнейшем;
- овладение основными навыками исследовательской деятельности, установка на осмысление опыта, наблюдений, поступков и стремление совершенствовать пути достижения индивидуального и коллективного благополучия;
- сформированность информационной культуры, в том числе навыков самостоятельной работы с учебными текстами, справочной литературой, разнообразными средствами информационных технологий, а также умения самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности;

Формирование культуры здоровья:

- осознание ценности жизни; ответственное отношение к своему здоровью;
- установка на здоровый образ жизни, в том числе и за счёт освоения и соблюдения требований безопасной эксплуатации средств информационных и коммуникационных технологий (ИКТ).

Трудовое воспитание:

- интерес к практическому изучению профессий и труда в сферах профессиональной деятельности, связанных с информатикой, программированием и информационными технологиями, основанными на достижениях науки информатики и научно-технического прогресса;
- осознанный выбор и построение индивидуальной траектории образования и жизненных планов с учётом личных и общественных интересов и потребностей.

Экологическое воспитание:

- осознание глобального характера экологических проблем и путей их решения, в том числе с учётом возможностей ИКТ.

Адаптация обучающегося к изменяющимся условиям социальной среды:

- освоение обучающимися социального опыта, основных социальных ролей, соответствующих ведущей деятельности возраста, норм и правил общественного поведения, форм социальной жизни в группах и сообществах, в том числе существующих в виртуальном пространстве.

Метапредметные результаты

Метапредметные результаты освоения образовательной программы по информатике отражают овладение универсальными учебными действиями — познавательными, коммуникативными, регулятивными.

Универсальные познавательные действия

Базовые логические действия:

- умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логические рассуждения, делать умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;
- умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;

- самостоятельно выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящий с учётом самостоятельно выделенных критериев).

Базовые исследовательские действия:

- формулировать вопросы, фиксирующие разрыв между реальным и желательным состоянием ситуации, объекта, и самостоятельно устанавливать искомое и данное;
- оценивать на применимость и достоверность информацию, полученную в ходе исследования;
- прогнозировать возможное дальнейшее развитие процессов, событий и их последствия в аналогичных или сходных ситуациях, а также выдвигать предположения об их развитии в новых условиях и контекстах.

Работа с информацией:

- выявлять дефицит информации, данных, необходимых для решения поставленной задачи;
- применять различные методы, инструменты и запросы при поиске и отборе информации или данных из источников с учётом предложенной учебной задачи и заданных критериев;
- выбирать, анализировать, систематизировать и интерпретировать информацию различных видов и форм представления;
- самостоятельно выбирать оптимальную форму представления информации и иллюстрировать решаемые задачи несложными схемами, диаграммами, иной графикой и их комбинациями;
- оценивать надёжность информации по критериям, предложенным учителем или сформулированным самостоятельно;
 - эффективно запоминать и систематизировать информацию. Универсальные коммуникативные действия

Общение:

- сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций;
- публично представлять результаты выполненного опыта (эксперимента, исследования, проекта);
- самостоятельно выбирать формат выступления с учётом задач презентации и особенностей аудитории и в соответствии с ним составлять устные и письменные тексты с использованием иллюстративных материалов.

Совместная деятельность (сотрудничество):

- понимать и использовать преимущества командной и индивидуальной работы при решении конкретной проблемы, в том числе при создании информационного продукта;
- принимать цель совместной информационной деятельности по сбору, обработке, передаче, формализации информации; коллективно строить действия по её достижению: распределять роли, договариваться, обсуждать процесс и результат совместной работы;
- выполнять свою часть работы с информацией или информационным продуктом, достигая качественного результата по своему направлению и координируя свои действия с другими членами команды;
- оценивать качество своего вклада в общий информационный продукт по критериям, самостоятельно сформулированным участниками взаимодействия;
- сравнивать результаты с исходной задачей и вклад каждого члена команды в достижение результатов, разделять сферу ответственности и проявлять готовность к предоставлению отчёта перед группой.

Универсальные регулятивные действия Самоорганизация:

- выявлять в жизненных и учебных ситуациях проблемы, требующие решения;
- ориентироваться в различных подходах к принятию решений (индивидуальное принятие решений, принятие решений в группе);

- самостоятельно составлять алгоритм решения задачи (или его часть), выбирать способ решения учебной задачи с учётом имеющихся ресурсов и собственных возможностей, аргументировать предлагаемые варианты решений;
- составлять план действий (план реализации намеченного алгоритма решения), корректировать предложенный алгоритм с учётом получения новых знаний об изучаемом объекте;
- делать выбор в условиях противоречивой информации и брать ответственность за решение.

Самоконтроль (рефлексия):

- владеть способами самоконтроля, самомотивации и рефлексии;
- давать адекватную оценку ситуации и предлагать план её изменения;
- учитывать контекст и предвидеть трудности, которые могут возникнуть при решении учебной задачи, адаптировать решение к меняющимся обстоятельствам;
- объяснять причины достижения (недостижения) результатов информационной деятельности, давать оценку приобретённому опыту, уметь находить позитивное в произошедшей ситуации;
- вносить коррективы в деятельность на основе новых обстоятельств, изменившихся ситуаций, установленных ошибок, возникших трудностей;
 - оценивать соответствие результата цели и условиям. Эмоциональный интеллект:
 - ставить себя на место другого человека, понимать мотивы и намерения другого. Принятие себя и других:
- осознавать невозможность контролировать всё вокруг даже в условиях открытого доступа к любым объёмам информации.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

К концу обучения в 8 классе у обучающегося будут сформированы следующие

умения:

- пояснять на примерах различия между позиционными и непозиционными системами счисления;
- записывать и сравнивать целые числа от 0 до 1024 в различных позиционных системах счисления (с основаниями 2, 8, 16), выполнять арифметические операции над ними;
- раскрывать смысл понятий «высказывание», «логическая операция», «логическое выражение»;
- записывать логические выражения с использованием дизъюнкции, конъюнкции и отрицания, определять истинность логических выражений, если известны значения истинности входящих в него переменных, строить таблицы истинности для логических выражений;
- раскрывать смысл понятий «исполнитель», «алгоритм», «программа», понимая разницу между употреблением этих терминов в обыденной речи и в информатике;
- описывать алгоритм решения задачи различными способами, в том числе в виде блок-схемы;
- составлять, выполнять вручную и на компьютере несложные алгоритмы с использованием ветвлений и циклов для управления исполнителями, такими как Робот, Черепашка, Чертёжник;
- использовать константы и переменные различных типов (числовых, логических, символьных), а также содержащие их выражения, использовать оператор присваивания;
- использовать при разработке программ логические значения, операции и выражения с ними;
- анализировать предложенные алгоритмы, в том числе определять, какие результаты возможны при заданном множестве исходных значений;

программы одном создавать и отлаживать на ИЗ языков программирования (Python, C++, Паскаль, Java, C#, Школьный Алгоритмический Язык), реализующие несложные алгоритмы обработки числовых данных с использованием циклов и ветвлений, в том числе реализующие проверку делимости одного целого числа на другое, проверку натурального числа на простоту, выделения цифр из натурального числа.

Тематическое планирование курса информатики 8 класса (1 час в неделю, 34 часа в год)

Электронные (цифровые) образовательные ресурсы: российская образовательная платформа Яндекс Учебник, URL: https://education.yandex.ru/

Раздел/тема	Количество часов
Системы счисления	5
Элементы математической логики	6
Исполнители и алгоритмы. Алгоритмические конструкции	10
Язык программирования. Анализ алгоритмов	13
Итого	34

Календарно-тематическое планирование курса информатики 8 класса (1 час в неделю, 34 часа в год)

Тема раздела	№	Часы	Тема урока	Дата	Дата
	урок			по	по
	a			плану	факту
Системы	1		Позиционные и		
счисления (5	5		непозиционные		
часов)			системы счисления		
	2	1	Развёрнутая форма		
			записи числа		
	3	1	Переводы из различных		
			систем счисления		
	4	1	Переводы между		
			системами счисления с		
			основаниями 2, 8		
			и 16		
	5	1	Арифметические		
			операции в		
			позиционных системах		
			счисления		
Элементы	6	1	Основы логики		
математичес	7	1	Составные логические		
кой логики			выражения		
(6 часов)	8	1	Таблицы истинности		

	9	1	Логические операции	
			над множествами	
	10	1	Логические элементы	
	11	1	Логические схемы	
Исполните	12	1	Робот: поле,	
ли и			команды и	
алгоритмы.			программ	
Алгоритмически	13	1	Тесты и простые	
е конструкции			программы.	
(10 часов)	14	1	Условный оператор.	
	15	1	Анализ программ,	
			решение задач.	
	16	1	Вложенные	
			условные	
			операторы.	
	17	1	Составные	
			условия,	
			операторы.	

18	1	Цикл FOR.
19	1	Цикл WHILE.
20	1	Свойства
		алгоритмов и
		решение задач.
21	1	Итоговая контрольная

			работа.
Язык	22	1	Введение в
программирован			программирование
ия. Анализ	23	1	Вывод, типы данных и
алгоритмов (13			переменные
часов)	24	1	Арифметика строк
	25	1	Арифметика чисел
	26	1	Условный оператор,
			операции сравнения
	27	1	Составные
			условия,
			логический тип
	28	1	Цикл с параметром
	29	1	Переменная цикла for
	30	1	Варианты цикла for
	31	1	Цикл while
	32	1	Индексы строк
	33	1	Методы строк
	34	1	Вещественные числа и
			тип float

Использование внешних сервисов, ссылки в курсе информатики 8 класса

Чтобы не зависеть от установленного ПО, облегчить работу школьникам и учителям и не тратить время урока на скачивание и установку необходимых программ, программа ЭОР предлагает использование онлайн-сервисов.

Назван	Ссылка	Пояснение
ие		
сервиса		
Logic Circuit	https://www.logiccircuit.org/	В модуле 1.3 «Элементы
		математической логики» предложена
		для использования специализированная
		программа для построения логических
		схем — Logic Circuit.
		Модуль содержит ссылку на официальный
		сайт Logic Circuit, с которого можно
		скачать ПО.
		Важной частью модуля является
		практическое задание, основанное на
		использовании этой программы для
		конструирования логических схем.